
Sentence Processing in a Vectorial
Model of Working Memory

William Schuler
Department of Linguistics,
The Ohio State University

June 29, 2014

William Schuler Sentence Processing in a Vectorial Model of Working Memory

Introduction

I’m envious of my computational cog neuro colleagues; they define. . .
I associative memory in terms of neural activation (vector prod. model).

[Marr, 1971, Anderson et al., 1977, Murdock, 1982, McClelland et al., 1995, Howard and Kahana, 2002]

I one (possibly superposed) activation-based state: cortex as vector
I a set of weight-based cued associations: hippocampus as matrix

I neural activation in terms of ligands, receptors, chemistry, physics.
I’d like to define parsing in terms of (vectorial) associative memory models!

But existing sent. proc. models don’t do parsing / connect to vector memory:
I connectionist models don’t explain why syntactic prob. is so predictive.

(subjacency, gap propagation to modifiers, . . .)
[Fossum and Levy, 2012, van Schijndel et al., 2013b, van Schijndel et al., 2014]

I ACT-R is a good candidate, but it is serial (ditto GP, construal, race).
vector state can easily be superposed, why not in sentence proc?

I full parallel surprisal accounts don’t explain center embedding effects.
superposing distinct analyses requires huge tensors, then all available.

William Schuler Sentence Processing in a Vectorial Model of Working Memory

Introduction

So I’ll build a model based on our earlier symbolic parallel model:
I builds ‘incomplete categories’ in left-corner parse [Schuler et al., 2010]:

I top-down for right children, to build ‘awaited’ category: S/VP V→ S/NP
I bottom-up for left children, to build ‘active’ category: NP/N N→ S/VP

I unlike earlier work, syntactic category states are superposed in vector
I constraints on ‘awaited’ categories are multiplied in at right children
I constraints on ‘active’ categories are reconstructed at left children

Results:

I seems to work, theoretically justifies parallel left-corner parsing model
I predicts processing difficulty in center embedding:

I result of noise in reconstruction after multiplied-in constraints

(Warning: ‘existence proof’ results, not a state-of-the-art parser.)

William Schuler Sentence Processing in a Vectorial Model of Working Memory

Previous Work: Left-corner Parsing

In left-corner parse [van Schijndel et al., 2013a], either do a fork or don’t:

–F: a

b

xt

+F: a

b

a′

xt

Build a complete category (triangle).

a/b xt

a
b → xt (–F)

a/b xt

a/b a′
b

+
→ a′ ... ; a′ → xt (+F)

William Schuler Sentence Processing in a Vectorial Model of Working Memory

Previous Work: Left-corner Parsing

Then, either do a join or don’t (incrementally build top-down or bottom-up):

+J: a

b

a′′ b ′′

–J: a

b
a′

a′′ b ′′

Build incomplete category (trapezoid) out of complete category (triangle).

a/b a′′

a/b ′′
b → a′′ b ′′ (+J)

a/b a′′

a/b a′/b ′′
b

+
→ a′ ... ; a′ → a′′ b ′′ (–J)

William Schuler Sentence Processing in a Vectorial Model of Working Memory

Previous Work: Vectorial Memory

Model connections in associative memory w. matrix [Anderson et al., 1977]:

v = M u (1)

(M u)[i]
def
=
∑J

j=1 M[i,j] · u[j] (1′)

Build cued associations using outer product:

Mt = Mt−1 + v ⊗ u (2)

(v ⊗ u)[i,j]
def
= v[i] · u[j] (2′)

Combine cued associations using pointwise / diagonal product:

w = diag(u) v (3)

(diag(v) u)[i]
def
= v[i] · u[i] (3′)

William Schuler Sentence Processing in a Vectorial Model of Working Memory

Vectorial Parser

We can implement the two left-corner parser phases using these operations.

Here’s what we need:

Permanent ‘procedural’ associations (separate matrices, for simplicity):
I associative store for preterminal category given observation:

P =
∑

i pi ⊗ xi

I associative store for grammar rule given parent / l. child / r. child:
G =

∑
i gi ⊗ ci; G′ =

∑
i gi ⊗ c′i ; G′′ =

∑
i gi ⊗ c′′i

I associative store for l. descendant category given ancestor category:

D′0 ← diag(1); D0 ← diag(0); D′k ← G′>G D′k−1; Dk
+
← D′k−1

I associative store for r. descendant category given ancestor category:

E′0 ← diag(1); E0 ← diag(0); E′k ← G′′>G E′k−1; Ek
+
← E′k−1

William Schuler Sentence Processing in a Vectorial Model of Working Memory

Vectorial Parser

We’ll also need:

Temporary state vector ‘working memory’:
I lowest awaited node: b (can be superposed, of course)
I observations: x (word token)

Temporary associations (separate matrices, for simplicity):
I associative store for ‘active’ node above ‘awaited’ node: A
I associative store for ‘awaited’ node above ‘active’ node: B
I associative store for category type of node: C

William Schuler Sentence Processing in a Vectorial Model of Working Memory

Vectorial Parser - ‘fork’ phase

–F:
at−1 (= a′′t)

bt−1

xt

+F: at−1

bt−1

a′t−.5(= a′′t)

xt

B

c−t = diag(P xt) Ct−1 bt−1 (no-fork preterminal category combines x, b)

c+
t = diag(P xt) D Ct−1 bt−1 (forked preterminal category goes through D)

at−.5, a′t−.5 ∼ Exp (100 of 10R
20
−150 to be sparse, avoid over-/underflow)

at−1 = At−1 bt−1 (define a)

Bt−.5 = Bt−1 + bt−1 ⊗ a′t−.5 + Bt−1 at−1 ⊗ at−.5 (update B for new nodes)

Ct−.5 = Ct−1 + c+
t ⊗ a′t−.5 + diag(Ct−1 at−1) E>c−t ⊗ at−.5 (reconstruct via E)

William Schuler Sentence Processing in a Vectorial Model of Working Memory

Vectorial Parser - ‘join’ phase

+J: at−.5

bt−.5

a′′t b ′′t

A

–J: at−.5

bt−.5

a′t

a′′t b ′′t

B

A

g+
t = diag(G′ Ct−.5 a′′t) G Ct−.5 bt−.5 (join rule combines categories of a′′, b)

g−t = diag(G′ Ct−.5 a′′t) G D Ct−.5 bt−.5 (no-join rule goes through D)

a′t , b
′′
t ∼ Exp (100 of 10R

20
−150 to be sparse, avoid over-/underflow)

At = At−1 +
At−1 bt−.5 ||g+

t ||+a′t ||g
−
t ||

||At−1 bt−.5 ||g+
t ||+a′t ||g

−
t ||||
⊗ b ′′t (update A w. weighted avg)

Bt = Bt−.5 + bt−.5 ⊗ a′t (define B for a′)

Ct = Ct−.5 + G>g−t ⊗ a′t +
G′′>g+

t +G′′>g−t
||G′′>g+

t +G′′>g−t ||
⊗ b ′′t (update C w. weighted avg)

William Schuler Sentence Processing in a Vectorial Model of Working Memory

Vectorial Grammar

Parser accepts PCFGs: (note this grammar can be center-embedded)

P(T → S T) = 1.0

P(S → NP VP) = 0.5

P(S → IF S THEN S) = 0.25

P(S → EITHER S OR S) = 0.25

P(IF → if) = 1.0

P(THEN → then) = 1.0

P(EITHER → either) = 1.0

P(OR → or) = 1.0

P(NP → kim) = 0.5

P(NP → pat) = 0.5

P(VP → leaves) = 0.5

P(VP → stays) = 0.5

William Schuler Sentence Processing in a Vectorial Model of Working Memory

Predictions

This parser can process short sentences using a simple associative store
(meaning it usually predicts a top-level category at the correct position):

condition correct incorrect
right-branching:
If Kim stays then if Kim leaves then Pat leaves. 297 203
center-embedded:
If either Kim stays or Kim leaves then Pat leaves. 231* 269

And it also predicts difficulty at center embedded constructions (*p < .001)!

William Schuler Sentence Processing in a Vectorial Model of Working Memory

Predictions

Why is center embedding difficult for this model?
I traversal to r. child multiplies constraints on b, eliminates hypotheses.

e.g. if b is S or NP (say after know), then after word the, b ′′ must be N.

+J: a

b

a′′ b ′′

A

I traversal from l. child reconstructs constraints on a using b ′′, but lossy.
e.g. if a was S or NP, after the dog: b ′′ is N, reconstructed a is S or NP.

I longer r. traversal mean more constraints are ignored, more distortion.

William Schuler Sentence Processing in a Vectorial Model of Working Memory

Scalability

Flaw: why is accuracy on both types of sentences so low?
I vectors are short
I vectors are only positive
I reconstruction is not done as cleverly as possible
I outer products could be added using Howard-Kahana norming
I . . .

Maybe someday this could be broad-coverage, but don’t need it today.

William Schuler Sentence Processing in a Vectorial Model of Working Memory

Conclusion

This talk defined parsing in terms of (vectorial) associative memory models
[Marr, 1971, Anderson et al., 1977, Murdock, 1982, McClelland et al., 1995, Howard and Kahana, 2002]

I one (possibly superposed) activation-based state: cortex as vector
I a set of weight-based cued associations: hippocampus as matrix

Model provides algorithmic-level justification for parallel left-corner parsing.
Model provides algorithmic-level justification for PCFG model.

Model rightly predicts that center embedded sentences are harder to parse.

Model provides an explanatory model of center embedding difficulty:
I due to need to reconstruct active category after constraints on awaited.

Thank you!

William Schuler Sentence Processing in a Vectorial Model of Working Memory

Bibliography I

Anderson, J. A., Silverstein, J. W., Ritz, S. A., and Jones, R. S. (1977).
Distinctive features, categorical perception and probability learning:
Some applications of a neural model.
Psychological Review, 84:413–451.

Fossum, V. and Levy, R. (2012).
Sequential vs. hierarchical syntactic models of human incremental
sentence processing.
In Proceedings of CMCL 2012. Association for Computational
Linguistics.

Howard, M. W. and Kahana, M. J. (2002).
A distributed representation of temporal context.
Journal of Mathematical Psychology, 45:269–299.

William Schuler Sentence Processing in a Vectorial Model of Working Memory

Bibliography II

Marr, D. (1971).
Simple memory: A theory for archicortex.
Philosophical Transactions of the Royal Society (London) B, 262:23–81.

McClelland, J. L., McNaughton, B. L., and O’Reilly, R. C. (1995).
Why there are complementary learning systems in the hippocampus
and neocortex: Insights from the successes and failures of
connectionist models of learning and memory.
Psychological Review, 102:419–457.

Murdock, B. (1982).
A theory for the storage and retrieval of item and associative
information.
Psychological Review, 89:609–626.

William Schuler Sentence Processing in a Vectorial Model of Working Memory

Bibliography III

Schuler, W., AbdelRahman, S., Miller, T., and Schwartz, L. (2010).
Broad-coverage incremental parsing using human-like memory
constraints.
Computational Linguistics, 36(1):1–30.

van Schijndel, M., Exley, A., and Schuler, W. (2013a).
A model of language processing as hierarchic sequential prediction.
Topics in Cognitive Science, 5(3):522–540.

van Schijndel, M., Nguyen, L., and Schuler, W. (2013b).
An analysis of memory-based processing costs using incremental deep
syntactic dependency parsing.
In Proceedings of CMCL 2013. Association for Computational
Linguistics.

William Schuler Sentence Processing in a Vectorial Model of Working Memory

Bibliography IV

van Schijndel, M., Schuler, W., and Culicover, P. W. (2014).
Frequency effects in the processing of unbounded dependencies.
In Proc. of CogSci 2014. Cognitive Science Society.

William Schuler Sentence Processing in a Vectorial Model of Working Memory

