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Introduction

I’m envious of my computational cog neuro colleagues; they define. . .
I associative memory in terms of neural activation (vector prod. model).

[Marr, 1971, Anderson et al., 1977, Murdock, 1982, McClelland et al., 1995, Howard and Kahana, 2002]

I one (possibly superposed) activation-based state: cortex as vector
I a set of weight-based cued associations: hippocampus as matrix

I neural activation in terms of ligands, receptors, chemistry, physics.
I’d like to define parsing in terms of (vectorial) associative memory models!

But existing sent. proc. models don’t do parsing / connect to vector memory:
I connectionist models don’t explain why syntactic prob. is so predictive.

(subjacency, gap propagation to modifiers, . . . )
[Fossum and Levy, 2012, van Schijndel et al., 2013b, van Schijndel et al., 2014]

I ACT-R is a good candidate, but it is serial (ditto GP, construal, race).
vector state can easily be superposed, why not in sentence proc?

I full parallel surprisal accounts don’t explain center embedding effects.
superposing distinct analyses requires huge tensors, then all available.
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Introduction

So I’ll build a model based on our earlier symbolic parallel model:
I builds ‘incomplete categories’ in left-corner parse [Schuler et al., 2010]:

I top-down for right children, to build ‘awaited’ category: S/VP V→ S/NP
I bottom-up for left children, to build ‘active’ category: NP/N N→ S/VP

I unlike earlier work, syntactic category states are superposed in vector
I constraints on ‘awaited’ categories are multiplied in at right children
I constraints on ‘active’ categories are reconstructed at left children

Results:

I seems to work, theoretically justifies parallel left-corner parsing model
I predicts processing difficulty in center embedding:

I result of noise in reconstruction after multiplied-in constraints

(Warning: ‘existence proof’ results, not a state-of-the-art parser.)
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Previous Work: Left-corner Parsing

In left-corner parse [van Schijndel et al., 2013a], either do a fork or don’t:

–F: a

b

xt

+F: a

b

a′

xt

Build a complete category (triangle).

a/b xt

a
b → xt (–F)

a/b xt

a/b a′
b

+
→ a′ ... ; a′ → xt (+F)
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Previous Work: Left-corner Parsing

Then, either do a join or don’t (incrementally build top-down or bottom-up):

+J: a

b

a′′ b ′′

–J: a

b
a′

a′′ b ′′

Build incomplete category (trapezoid) out of complete category (triangle).

a/b a′′

a/b ′′
b → a′′ b ′′ (+J)

a/b a′′

a/b a′/b ′′
b

+
→ a′ ... ; a′ → a′′ b ′′ (–J)
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Previous Work: Vectorial Memory

Model connections in associative memory w. matrix [Anderson et al., 1977]:

v = M u (1)

(M u)[i]
def
=
∑J

j=1 M[i,j] · u[j] (1′)

Build cued associations using outer product:

Mt = Mt−1 + v ⊗ u (2)

(v ⊗ u)[i,j]
def
= v[i] · u[j] (2′)

Combine cued associations using pointwise / diagonal product:

w = diag(u) v (3)

(diag(v) u)[i]
def
= v[i] · u[i] (3′)
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Vectorial Parser

We can implement the two left-corner parser phases using these operations.

Here’s what we need:

Permanent ‘procedural’ associations (separate matrices, for simplicity):
I associative store for preterminal category given observation:

P =
∑

i pi ⊗ xi

I associative store for grammar rule given parent / l. child / r. child:
G =

∑
i gi ⊗ ci; G′ =

∑
i gi ⊗ c′i ; G′′ =

∑
i gi ⊗ c′′i

I associative store for l. descendant category given ancestor category:

D′0 ← diag(1); D0 ← diag(0); D′k ← G′>G D′k−1; Dk
+
← D′k−1

I associative store for r. descendant category given ancestor category:

E′0 ← diag(1); E0 ← diag(0); E′k ← G′′>G E′k−1; Ek
+
← E′k−1
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Vectorial Parser

We’ll also need:

Temporary state vector ‘working memory’:
I lowest awaited node: b (can be superposed, of course)
I observations: x (word token)

Temporary associations (separate matrices, for simplicity):
I associative store for ‘active’ node above ‘awaited’ node: A
I associative store for ‘awaited’ node above ‘active’ node: B
I associative store for category type of node: C
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Vectorial Parser - ‘fork’ phase

–F:
at−1 (= a′′t )

bt−1

xt

+F: at−1

bt−1

a′t−.5(= a′′t )

xt

B

c−t = diag(P xt) Ct−1 bt−1 (no-fork preterminal category combines x, b)

c+
t = diag(P xt) D Ct−1 bt−1 (forked preterminal category goes through D)

at−.5, a′t−.5 ∼ Exp (100 of 10R
20
−150 to be sparse, avoid over-/underflow)

at−1 = At−1 bt−1 (define a)

Bt−.5 = Bt−1 + bt−1 ⊗ a′t−.5 + Bt−1 at−1 ⊗ at−.5 (update B for new nodes)

Ct−.5 = Ct−1 + c+
t ⊗ a′t−.5 + diag(Ct−1 at−1) E>c−t ⊗ at−.5 (reconstruct via E)

William Schuler Sentence Processing in a Vectorial Model of Working Memory



Vectorial Parser - ‘join’ phase

+J: at−.5

bt−.5

a′′t b ′′t

A

–J: at−.5

bt−.5

a′t

a′′t b ′′t

B

A

g+
t = diag(G′ Ct−.5 a′′t ) G Ct−.5 bt−.5 (join rule combines categories of a′′, b)

g−t = diag(G′ Ct−.5 a′′t ) G D Ct−.5 bt−.5 (no-join rule goes through D)

a′t , b
′′
t ∼ Exp (100 of 10R

20
−150 to be sparse, avoid over-/underflow)

At = At−1 +
At−1 bt−.5 ||g+

t ||+a′t ||g
−
t ||

||At−1 bt−.5 ||g+
t ||+a′t ||g

−
t ||||
⊗ b ′′t (update A w. weighted avg)

Bt = Bt−.5 + bt−.5 ⊗ a′t (define B for a′)

Ct = Ct−.5 + G>g−t ⊗ a′t +
G′′>g+

t +G′′>g−t
||G′′>g+

t +G′′>g−t ||
⊗ b ′′t (update C w. weighted avg)
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Vectorial Grammar

Parser accepts PCFGs: (note this grammar can be center-embedded)

P(T → S T) = 1.0

P(S → NP VP) = 0.5

P(S → IF S THEN S) = 0.25

P(S → EITHER S OR S) = 0.25

P(IF → if) = 1.0

P(THEN → then) = 1.0

P(EITHER → either) = 1.0

P(OR → or) = 1.0

P(NP → kim) = 0.5

P(NP → pat) = 0.5

P(VP → leaves) = 0.5

P(VP → stays) = 0.5
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Predictions

This parser can process short sentences using a simple associative store
(meaning it usually predicts a top-level category at the correct position):

condition correct incorrect
right-branching:
If Kim stays then if Kim leaves then Pat leaves. 297 203
center-embedded:
If either Kim stays or Kim leaves then Pat leaves. 231* 269

And it also predicts difficulty at center embedded constructions (*p < .001)!
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Predictions

Why is center embedding difficult for this model?
I traversal to r. child multiplies constraints on b, eliminates hypotheses.

e.g. if b is S or NP (say after know), then after word the, b ′′ must be N.

+J: a

b

a′′ b ′′

A

I traversal from l. child reconstructs constraints on a using b ′′, but lossy.
e.g. if a was S or NP, after the dog: b ′′ is N, reconstructed a is S or NP.

I longer r. traversal mean more constraints are ignored, more distortion.
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Scalability

Flaw: why is accuracy on both types of sentences so low?
I vectors are short
I vectors are only positive
I reconstruction is not done as cleverly as possible
I outer products could be added using Howard-Kahana norming
I . . .

Maybe someday this could be broad-coverage, but don’t need it today.
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Conclusion

This talk defined parsing in terms of (vectorial) associative memory models
[Marr, 1971, Anderson et al., 1977, Murdock, 1982, McClelland et al., 1995, Howard and Kahana, 2002]

I one (possibly superposed) activation-based state: cortex as vector
I a set of weight-based cued associations: hippocampus as matrix

Model provides algorithmic-level justification for parallel left-corner parsing.
Model provides algorithmic-level justification for PCFG model.

Model rightly predicts that center embedded sentences are harder to parse.

Model provides an explanatory model of center embedding difficulty:
I due to need to reconstruct active category after constraints on awaited.

Thank you!
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